Apr 16-17, 2018
9:30 - 17:30
Instructors: Adrian Baez-Ortega, Ashley Sawle, Hugo Tavares, Mark Fernandes
Helpers:
Data Carpentry workshops are for any researcher who has data they want to analyze, and no prior computational experience is required. This hands-on workshop teaches basic concepts, skills and tools for working more effectively with data. We will cover Data organization in spreadsheets, data cleaning with OpenRefine, and learn how to use the statistical program R. If time allows we will also talk about Interacting with databases from R. Participants will be encouraged to help one another and to apply what they have learned to their own research problems.
For more information on what we teach and why, please see our paper "Best Practices for Scientific Computing".
Who: The course is aimed at graduate students and other researchers. You don't need to have any previous knowledge of the tools that will be presented at the workshop.
Where: Bioinformatics Training Room, Craik-Marshall Building, Downing Site. Get directions with OpenStreetMap or Google Maps.
When: Apr 16-17, 2018. Add to your Google Calendar.
Requirements: All the software needed for this workshop is available on the training room's computers. However, participants can bring their own laptop with a Mac, Linux, or Windows operating system (not a tablet, Chromebook, etc.) that they have administrative privileges on. They should have a few specific software packages installed (listed below). They are also required to abide by Data Carpentry's Code of Conduct.
Accessibility: We are committed to making this workshop accessible to everybody. Please get in touch (using contact details below) if you have any special requirements.
Materials will be provided in advance of the workshop and large-print handouts are available if needed by notifying the organizers in advance. If we can help making learning easier for you (e.g. sign-language interpreters, lactation facilities) please get in touch and we will attempt to provide them.
Contact: Please email Gabriella Rustici <gr231@cam.ac.uk> for more information.
Surveys
Please be sure to complete this survey after the workshop: Cambridge training survey
We would also appreciate if you filled in these surveys for the Data Carpentry community:
Data carpentry pre-workshop Survey
Data carpentry post-workshop Survey
We will use this collaborative document for chatting, taking notes, and sharing URLs and bits of code.
Data files for the lesson are available here.
Data files for the lesson are available here.
To participate in a Data Carpentry workshop, you will need access to the software described below. In addition, you will need an up-to-date web browser.
We maintain a list of common issues that occur during installation as a reference for instructors that may be useful on the Configuration Problems and Solutions wiki page.
R is a programming language that is especially powerful for data exploration, visualization, and statistical analysis. To interact with R, we use RStudio.
Install R by downloading and running this .exe file from CRAN. Also, please install the RStudio IDE. Note that if you have separate user and admin accounts, you should run the installers as administrator (right-click on .exe file and select "Run as administrator" instead of double-clicking). Otherwise problems may occur later, for example when installing R packages.
Install R by downloading and running this .pkg file from CRAN. Also, please install the RStudio IDE.
You can download the binary files for your distribution
from CRAN. Or
you can use your package manager (e.g. for Debian/Ubuntu
run sudo apt-get install r-base
and for Fedora run
sudo dnf install R
). Also, please install the
RStudio IDE.
For this lesson you will need OpenRefine and a web browser. Note: this is a Java program that runs on your machine (not in the cloud). It runs inside a web browser, but no web connection is needed.
Check that you have either the Firefox or the Chrome browser installed and set as your default browser. OpenRefine runs in your default browser. It will not run correctly in Internet Explorer.
Download software from http://openrefine.org/
Create a new directory called OpenRefine.
Unzip the downloaded file into the OpenRefine directory by right-clicking and selecting "Extract ...".
Go to your newly created OpenRefine directory.
Launch OpenRefine by clicking google-refine.exe
(this will launch a command prompt window, but you can ignore that - just wait for OpenRefine to open in the browser).
If you are using a different browser, or if OpenRefine does not automatically open for you, point your browser at http://127.0.0.1:3333/ or http://localhost:3333 to use the program.
Check that you have either the Firefox or the Chrome browser installed and set as your default browser. OpenRefine runs in your default browser. It may not run correctly in Safari.
Download software from http://openrefine.org/.
Create a new directory called OpenRefine.
Unzip the downloaded file into the OpenRefine directory by double-clicking it.
Go to your newly created OpenRefine directory.
Launch OpenRefine by dragging the icon into the Applications folder.
Use Ctrl-click/Open ...
to launch it.
If you are using a different browser, or if OpenRefine does not automatically open for you, point your browser at http://127.0.0.1:3333/ or http://localhost:3333 to use the program.
Check that you have either the Firefox or the Chrome browser installed and set as your default browser. OpenRefine runs in your default browser.
Download software from http://openrefine.org/.
Make a directory called OpenRefine.
Unzip the downloaded file into the OpenRefine directory.
Go to your newly created OpenRefine directory.
Launch OpenRefine by entering ./refine
into the terminal within the OpenRefine directory.
If you are using a different browser, or if OpenRefine does not automatically open for you, point your browser at http://127.0.0.1:3333/ or http://localhost:3333 to use the program.
SQL is a specialized programming language used with databases. We use a simple database manager called SQLite in our lessons.
The Data Carpentry Windows Installer installs SQLite for Windows. If you used the installer to configure nano, you don't need to run it again.
SQLite comes pre-installed on macOS.
SQLite comes pre-installed on Linux.
If you installed Anaconda, it also has a copy of SQLite
without support to readline
.
Instructors will provide a workaround for it if needed.